Муниципальное автономное общеобразовательное учреждение Городского округа «город Ирбит» Свердловской области «Средняя общеобразовательная школа № 9»

ПРИНЯТО

на заседании педагогического совета Протокол № 6 от 27.02.2024 г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности «РОБОТОТЕХНИКА»

ДЛЯ ДЕТЕЙ 12-14 ЛЕТ (с использованием оборудования центра «Точка роста»)

СОДЕРЖАНИЕ

РАЗДЕЛ 1. КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОГРАММЕ	ы3
1.1. Пояснительная записка	3
1.2. Цель и задачи программы	5
1.3. Содержание программы	6
1.3.2. Содержание программы	9
1.4. Планируемые результаты	14
РАЗДЕЛ 2. КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УС	ЛОВИЙ.14
2.1. Календарный учебный график	14
2.3. Формы аттестации / контроля	16
2.4. Оценочные материалы	17
2.5. Методические материалы	17
2.6. Список литературы	18

РАЗДЕЛ 1. КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОГРАММЫ

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» имеет техническую направленность и реализуется в рамках типовой модели мероприятия по созданию новых мест в образовательных организациях различных типов для реализации дополнительных общеразвивающих программ всех направленностей федерального проекта «Успех каждого ребенка» национального проекта «Образование».

В настоящее время робототехника является одним из перспективных направлений научно-технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. Рассмотрение этого направления в рамках образовательного процесса происходит в области информатики, информационных и коммуникационных технологий.

Актуальность программы

дополнительной образовательной «Робототехника» Введение программы дополнительном образовании неизбежно изменит картину восприятия учащимися технических дисциплин, переводя их из разряда умозрительных в разряд прикладных. Применение учащимися на практике теоретических знаний, полученных на математике или физике, ведет к более глубокому пониманию основ, закрепляет полученные навыки, формируя образование в его наилучшем смысле. И с другой стороны, игры в роботы, в заблаговременно простейших которых узнаются основные принципы расчетов механических систем и алгоритмы их автоматического функционирования программируемых контроллеров, хорошей почвой управлением послужат ДЛЯ теоретического последующего освоения сложного материала на занятиях. Программирование на компьютере (например, виртуальных исполнителей) при всей его полезности для развития умственных способностей во многом уступает программированию автономного устройства, действующего в реальной окружающей среде. Подобно тому, как компьютерные игры уступают в полезности играм настоящим.

Возможность прикоснуться к неизведанному миру роботов для современного ребенка является очень мощным стимулом к познанию нового, преодолению инстинкта потребителя и формированию стремления к самостоятельному созиданию. При внешней привлекательности поведения, роботы могут быть содержательно наполнены интересными и непростыми задачами, которые неизбежно встанут перед юными инженерами. Их решение сможет привести к развитию уверенности в своих силах и к расширению горизонтов познания.

Отличительные особенности программы

Данная образовательная программа имеет ряд отличий от уже существующих аналогов. Элементы кибернетики и теории автоматического управления адаптированы для уровня восприятия учащихся, что позволяет начать подготовку инженерных кадров уже с младшего школьного возраста. Существующие аналоги предполагают поверхностное освоение элементов робототехники с преимущественно демонстрационным подходом к интеграции с другими предметами. Особенностью данной программы является нацеленность на конечный результат, т.е. учащийся создает не просто внешнюю модель

робота, дорисовывая в своем воображении его возможности, а действующее устройство, которое решает поставленную задачу.

Программа плотно связана с массовыми мероприятиями в научно-технической сфере учащихся (турнирами, состязаниями, конференциями), что позволяет, не выходя за рамки учебного процесса, принимать активное участие в конкурсах различного уровня: от районного до международного.

Адресат программы

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» имеет техническую направленность, рассчитана на обучение детей от 12 до 14 лет. Программа направлена на привлечение учащихся к современным технологиям конструирования, программирования и использования роботизированных устройств.

Объем и срок освоения программы

Количество детей в группе: от 10 до 20

Особенность набора в группу: свободный набор Сроки реализации: 1 учебный год (базовый уровень)

Количество часов в год: 72 уч. часа

Режим занятий, периодичность и продолжительность

Периодичность: 2 РАЗА В НЕДЕЛЮ ПО 1ЧАСУ (2 ЧАСА В НЕДЕЛЮ)

Продолжительность каждого занятия 45 минут, перерыв 10 минут

Форма обучения

Форма обучения – очная.

Основными формами образовательного процесса являются:

- практико-ориентированные учебные занятия;
- творческие мастерские.

На занятиях предусматриваются следующие формы организации учебной деятельности:

- индивидуальная (воспитаннику дается самостоятельное задание с учетом его возможностей);
- фронтальная (работа в коллективе при объяснении нового материала или отработке определенной темы);
 - групповая (разделение на мини-группы для выполнения определенной работы);
 - коллективная (выполнение работы для подготовки к соревнованиям, конкурсам).

Особенности организации образовательного процесса

В качестве основной задачи - реализация права на образование детей с ограниченными возможностями здоровья, через создание вариативных условий для получения образования детьми различных категории с учетом их психофизических особенностей. Необходимым условием организации успешного обучения и воспитания детей является создание адаптивной среды, позволяющей обеспечить их полноценную интеграцию и личностную самореализацию в образовательном учреждении, разработанным с учетом психофизических особенностей и возможностей обучающихся.

Новые принципы решения актуальных задач человечества с помощью роботов, усвоенные в школьном возрасте (пусть и в игровой форме), ко времени окончания вуза и

начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам. Занимаясь с детьми на кружках робототехники, мы подготовим специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике.

1.2. Цель и задачи программы

Цель программы

Развитие технического творчества и формирование научно — технической профессиональной ориентации обучающихся .

Задачи программы

1. Личностные:

- Воспитывать ценностное отношение к собственному труду, труду других людей и его результатам.
- Воспитывать ответственность, коммуникативные способности

2. Метапредметные:

- Развивать умение постановки технической задачи, синтеза и анализа информации, поиск путей и средств решения задачи и реализация творческого замысла.
- Развивать продуктивную (конструктивную) деятельность: обеспечить освоение детьми основных приёмов сборки и движении робототехнических средств.
- Способствовать развитию интереса к технике, конструированию, программированию, высоким технологиям, развитию конструкторских, инженерных и вычислительных навыков.

3. Предметные (образовательные):

- Формировать первичные представления о робототехнике, ее значении в жизни человека, о профессиях, связанных с изобретением и производством технических средств.
- Приобщать к научно техническому творчеству.
- Формировать навыки сотрудничества: работа в коллективе, в команде, малой группе (в паре).
- Способствовать формированию умения самостоятельно решать технические задачи в процессе конструирования моделей.
- Формировать пространственное и логическое мышление, умения анализировать предмет, выделять его характерные особенности, основные части, устанавливать связь между их назначением и строением.
- Формировать предпосылки учебной деятельности: умения и желания трудиться, выполнять задания в соответствии с инструкцией и поставленной целью, доводить начатое дело до конца, планировать будущую работу.

Обучающие

- учить сравнивать предметы по форме, размеру, цвету, находить закономерности, отличия и общие черты в конструкциях;
 - познакомить с такими понятиями, как устойчивость, основание, схема;
- используя демонстрационный материал, учить видеть конструкцию конкретного объекта, анализировать её основные части;
- учить создавать различные конструкции по рисунку, схеме, условиям, по словесной инструкции и объединённые общей темой;
- организовывать коллективные формы работы (пары, тройки), чтобы содействовать развитию навыков коллективной работы.

Развивающие:

- раскрыть природный творческий потенциал ребенка: его индивидуальность, органику, фантазию, внимание;
- сформировать техническую и эстетическую базы для дальнейшего восприятия и воспроизведения моделей;
 - развить ассоциативное и логическое мышление;
 - воспитание образного видения через создание моделей.

Воспитывающие:

- способствовать эстетическому и духовному воспитанию личности;
- воспитать любознательных, доброжелательных, отзывчивых членов нашего общества с активной гражданской позицией;
 - развитие навыков общения, коммуникативных способностей
 - заложить основы культуры поведения в обществе

1.3. Содержание программы

Учебно-тематический план

Nº	Наименование разделов и тем	Общее кол-во учебны х часов	В т.ч. теорети- ческих	В т.ч. практи- ческих	Форма контроля	Использование оборудования «Точки роста»
1	Вводное занятие. Введение в робототехнику	3	1	2		Образовательн ый набор для изучения
1.1	Что такое робот? Три закона робототехники.	1			Беседа.	многокомпоне нтных робототехниче ских систем и
1.2	Виды роботов.	1		1	Беседа.	манипуляцион
1.3	Принцип рычага. Машины и механизмы. Центр масс, плечо	1	1	1	Наблюдение	ных роботов
2	История развития роботов. Основы строения машин и механизмов.	5	2	3		Образовательн ый набор для изучения многокомпоне
2.1	Трение, передача движения.	1	1		Беседа.	нтных робототехниче ских систем и
2.2	Энергия эластичной деформации	1	1		Беседа.	манипуляцион ных роботов Четырехосевой
2.3	Мышцы робота – двигатели. Оси и шестеренки.	2		2	Наблюдение	учебный робот- манипулятор с модульными
2.4	Шестеренки.	1		1	Беседа	сменными насадками

					Наблюдение	Образовательн ый набор по механике,
						мехатронике и робототехнике Образовательный конструктор
						для практики блочного программирова
						ния с комплектом датчиков
3	Электроника	11	5	6		Образовательн ый набор для
3.1	Двигатель постоянного тока	1	1		Беседа.	изучения многокомпоне
3.2	Мозг робота – микроконтроллер.				Беседа.	нтных робототехниче
	Управление роботом с ПДУ.	1		1		ских систем и манипуляцион
3.3	ПДУ	1		1	Наблюдение .	ных роботов Четырехосевой учебный робот-
3.4	Глаза робота – ИК- датчики.	1	1		Беседа.	манипулятор с модульными
3.4	Что такое свет. ИК-датчик	1	1		Беседа.	сменными насадками
3.5	Робот, следующий по линии. Следование по линии	1		1	Наблюдение	Образовательн ый набор по механике,
3.6	Энергия робота – электричество. Принцип удаленного управления.	2	1	1	Беседа.	мехатронике и робототехнике Образовательн ый конструктор для практики
3.7	Как избегать столкновения с препятствиями? Обход препятствий	2	1	1	Наблюдение	блочного программирова ния с комплектом
3.8	ИК-датчики. Робот, следующий за объектом.	1		1	Наблюдение	датчиков
4.	Робо- конструирование	19	9	10		Образовательн ый набор для
4.1	Микроконтроллер	2	1	1	Беседа	изучения
4.2	Материнская плата.	2	1	1	Беседа.	многокомпоне
4.3	Вес и подъемные блоки	2	1	1	Беседа.	нтных робототехниче ских систем и
4.4	ПДУ и приемник ПДУ	2	1	1	Наблюдение	манипуляцион ных роботов
4.5	Шестеренки, ИК- датчики.				Беседа.	Четырехосевой учебный робот-
	использование шестеренок с разным	2	1	1		манипулятор с модульными
		1	Ī.	1	1	1

				1	1	G1 (G1 (G1 (G1 (G1 (G1 (G1 (G1 (G1 (G1 (
	количеством зубьев					СМЕННЫМИ
	для изменения					насадками Образовательн
	скорости вращения.				_	ый набор по
4.6	Трение. ПДУ и	2	1	1	Беседа.	механике,
	приемник ПДУ	_	_	_		мехатронике и
4.7	Блоки. ИК-датчики.				Наблюдение	робототехнике
	Сделать робота,					Образовательн
	использующего в	3	1	2		ый конструктор
	своей работе блочный	J	1			для практики
	механизм и ИК-					блочного
	датчик.					программирова
4.8	ПДУ и приемник				Наблюдение	ния с
	ПДУ. Сделать робота-	2	1	1		комплектом
	футболиста					датчиков
4.9	Блоки. Использование				Беседа.	
	блочного механизма,	2	1	1		
	управление им с ПДУ.	_	_			
5.	Программирование	34	1.4	20		Образовательн
		34	14	20		ый набор для
5.1	ИК-датчик. Робот,				Наблюдение	изучения
	управляемый с	3	1	2		многокомпоне
	помощью ИК-датчика.					нтных
5.2	ПДУ и приемник	1		1	Наблюдение	робототехниче
	ПДУ.	1		1	•	ских систем и
5.3	Шестеренки. Трение.				Беседа.	манипуляцион
	Робот, работающий на	2	1	1		ных роботов
	принципах зубчатой	2	1	1		Четырехосевой
	передачи и трения					учебный робот- манипулятор с
5.4	Трение. ПДУ и				Наблюдение	модульными
	приемник					сменными
	ПДУ.использование	2	1	1		насадками
	принципа трения, и					Образовательн
	управлять им с ПДУ.					ый набор по
5.5	Использование				Беседа.	механике,
	программируемой				, ,	мехатронике и
	платы.	2	1	1		робототехнике
	Программирование					Образовательн
	светодиодов					ый конструктор
5.6	Использование				Наблюдение	для практики
3.0	программируемой				Паотодение	блочного программирова
	платы.	3	1	2		ния с
	Программирование		1	_		комплектом
	двигателей					датчиков
5.7	Использование				Беседа.	,,,
3.7	программируемой				ъсседа.	
	платы.	2	1	1		
	Программирование		1	1		
ГО	КНОПОК				IIo6 mo morres	-
5.8	Датчик цвета	2	1	1	Наблюдение	
5.9	Пориод и изстета				Наблюдение	-
J.3	Период и частота. Маятник	2	1	1	таолюдение	
	ина и и и и и и и и и и и и и и и и и и			1	j •	

Серводвигатель.					
5.10 Использование				Беседа.	
датчиков в					
робототехнике.	2	1	1		
Алгоритмы движения по черной линии					
5.11 Обнаружение края				Беседа.	
стола. Делаем робота,	2	1	1		
не падающего со	_	1	1		
стола.				_	
5.12 Датчик касания	2	1	1	Наблюдение	
5.13 Рычаги в	2	1	1	Наблюдение	
строительной технике		1	1	•	
5.14 Ультразвуковой	2	1	1	Беседа.	
датчик		1	1		
5.15 Домашние роботы.	3	1	2	Наблюдение	
Роботы-уборщики	J	1		•	
5.16 Кинетическая энергия.	2		2	Наблюдение	
Инерция				•	
Итого	72	31	41		

1.3.2. Содержание программы

Модуль «Введение в робототехнику»

1.Вводное занятие. Введение в робототехнику (3 ч.)

1.1.Что такое робот? Три закона робототехники.

Теория:Общий обзор путей развития техники и её значение в жизни людей. Достижения российской науки и техники. Показ готовых моделей, выполненных воспитанниками объединения. Основные правила техники безопасности. Правила поведения. Порядок и план работы объединения. Дисциплина во время занятий. Модели лёгкие и простые в изготовлении

Практика: Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

1.2. Виды роботов.

Теория. Материалы и инструменты. Общие понятия и правильные приёмы работы. Знакомство с приёмами работы с деталями конструктора. Знакомство с видами роботов.

Практика: Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

1.3. Принцип рычага. Машины и механизмы. Центр масс, плечо.

Теория: Материалы и инструменты. Общие понятия и правильные приёмы работы. Общее понятие о принципе рычага. Знакомство с машинами и механизмами. Центр масс, плечо.

Практика:Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

Использование оборудования центра образования «Точка роста»: Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов

- 2. История развития роботов. Основы строения машин и механизмов (5ч.)
- 2.1. Трение, передача движения

Теория: Понятие о трении. Что такое передача движения. Общее представление о процессе создания машины (основные этапы проектирования и производства)

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей

2.2.Энергия эластичной информации

Теория: Понятие об энергии эластичной информации. Общее представление о процессе создания машины (основные этапы проектирования и производства)

Практика:Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей

2.3. Мышцы робота – двигатели. Оси и шестеренки.

Теория: Мышцы робота – двигатели. Что такое оси и шестеренки. Общее представление о процессе создания машины (основные этапы проектирования и производства)

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей

2.4. Шестеренки

Теория: Шестеренки. Понятие, применение. Общее представление о процессе создания машины (основные этапы проектирования и производства)

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей

Использование оборудования центра образования «Точка роста»:

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов. Четырехосевой учебный робот-манипулятор с модульными сменными насадками. Образовательный набор по механике, мехатронике и робототехнике. Образовательный конструктор для практики блочного программирования с комплектом датчиков.

- 3. Электроника (11 ч.)
- 3.1. Двигатель постоянного тока
- 3.2. Мозг робота микроконтроллер. Управление роботом с ПДУ.

Теория: Понятие о работе конструкторов и инженеров, общее представление о процессе создания машины (основные этапы проектирования и производства). Мозг робота – микроконтроллер. Управление роботом с ПДУ.

Практика:Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.3. ПДУ

Теория: Понятие о ПДУ. Управление роботом с ПДУ.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.4. Глаза робота – ИК-датчики.

Теория: Этапы создания робота. Глаза робота-ИК-датчики.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.5. Что такое свет. ИК-датчик

Теория: Что такое свет. Использование ИК-датчика.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.6. Робот, следующий по линии. Следование по линии

Теория: Что такое робот, следующий по линии? Понятие следование по линии.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.7. Энергия робота – электричество. Принцип удаленного управления.

Теория: Знакомство с понятием энергия робота. Электричество. Что такое принцип удаленного управления.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.8. Как избегать столкновения с препятствиями? Обход препятствий **Теория:** Что такое препятствие, столкновение с препятствием. Обход препятствий.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

3.9. ИК-датчики. Робот, следующий за объектом.

Теория: Что такое ИК-датчик. Робот, следующий за объектом.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели

Использование оборудования центра образования «Точка роста»:

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов. Четырехосевой учебный робот-манипулятор с модульными сменными насадками. Образовательный набор по механике, мехатронике и робототехнике. Образовательный конструктор для практики блочного программирования с комплектом датчиков.

- 4. Робо-конструирование (19 ч.)
- 4.1. Микроконтроллер

Теория: Основные этапы проектирования.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

4.2. Материнская плата

Теория: Материнская плата. Возможности, применение. Основные этапы проектирования и производства.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

4.3. Вес и подъемные блоки

Теория: Понятие вес и подъемные блоки. Возможности, применение. Основные этапы проектирования и производства.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

4.4. ПДУ и подъемник ПДУ

Теория: ПДУ. Подъемник ПДУ. Возможности, применение. Основные этапы проектирования и производства.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

4.5. Шестеренки, ИК-датчики. Использование шестеренок с разным количеством зубьев для изменения скорости вращения.

Теория: Шестеренки. ИК-датчики. Применение шестеренок с разным количеством зубьев для изменения скорости вращения.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

4.6. Трение. ПДУ и приемник ПДУ

Теория: Понятие трение, ПДУ и приемник ПДУ.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

4.7. Блоки. ИК-датчики. Сделать робота, использующего в своей работе блочный механизм и ИК-датчик

Теория: Знакомство с блоками, блочным механизмом и ИК-датчиками

Практика: Изготовление робота с блочным механизмом и ИК-датчиком.

4.8. ПДУ и приемник ПДУ.

Теория: ПДУ и приемник ПДУ.

Практика: Изготовление робота.

4.9. Блоки. Использование блочного механизма, управление им с ПДУ

Теория: Блоки, ПДУ, управление блочным механизмом.

Практика: Управление блочным механизмом с ПДУ

Использование оборудования центра образования «Точка роста»:

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов. Четырехосевой учебный робот-манипулятор с модульными сменными насадками. Образовательный набор по механике, мехатронике и робототехнике. Образовательный конструктор для практики блочного программирования с комплектом датчиков.

5. Программирование (34ч.)

5.1. ИК-датчик. Робот, управляемый с помощью ИК-датчика

Теория: ИК – датчик. Принципы работы управляемого робота с помощью ИК-датчика.

Практика: Изготовление робота, управляемого с помощью ИК-датчика.

5.2. ПДУ и приемник ПДУ. Сделать робота, управляемого с ПДУ

Теория: ПДУ и приемник ПДУ. Как сделать робота, управляемого с ПДУ

Практика: Изготовление робота, управляемого ПДУ.

5.3. Шестеренки. Трение. ПДУ и приемник ПДУ. Робот, работающий на принципах зубчатой передачи и трения

Теория: Шестеренки. Трение. ПДУ и приемник ПДУ. Как сделать робота, работающего на принципах зубчатой передачи и трения.

Практика: Изготовление робота, работающего на принципах зубчатой передачи и трения.

5.4. Трение. ПДУ и приемник ПДУ. Использование принципа трения, и управление им с ПДУ.

Теория: Трение. ПДУ и приемник ПДУ. Использование принципа трения, и управление им с ПДУ

Практика: Изготовление робота с использованием принципа трения, и управление им с ПДУ

5.5. Использование программируемой платы. Программирование светодиодов

Теория: Что такое программируемая плата. Как программировать светодиоды

Практика: Создание платы. Программирование светодиодов

5.6. Использование программируемой платы. Программирование двигателей

Теория: Как запрограммировать двигатели. Принципы программирования

Практика: Программирование двигателя

5.7. Использование программируемой платы. Программирование кнопок

Теория: Использование программируемой платы. Программирование кнопок

Практика: Программирование кнопок на практике

5.8. Датчик цвета

Теория: Принцип работы датчика света.

Практика: Конструирование робота с датчиком света.

5.9. Период и частота. Маятник. Серводвигатель. Логические операции «И» и «ИЛИ».

Теория: Понятие период и частота. Что такое серводвигатель.

Практика: Создание маятника. Изготовление серводвигателя

5.10. Использование ИК датчиков в робототехнике. Алгоритмы движения по черной линии

Теория: Как использовать в робототехнике ИК датчики

Практика: Алгоритмы движения по черной линии

5.11. Обнаружение края стола. Делаем робота, не падающего со стола.

Теория: Как изготовить робота, не падающего со стола.

Практика: Делаем робота, не падающего со стола.

5.12. Датчик касания

Теория: Датчик касания

Практика: Создание робота с датчиком касания.

5.13. Рычаги в строительной технике

Теория: Рычаги в строительной технике **Практика:** Конструирование рычагов

5.14. Ультразвуковой датчик

Теория: Ультразвуковой датчик

Практика: Изготовление робота с ультразвуковым датчиком.

5.15. Домашние роботы. Роботы-уборщики

Теория: Знакомство с домашними роботами. Роботы- уборщики.

Практика: Изготовление домашнего робота

5.16. Кинетическая энергия. Инерция

Теория: Понятие инерция. Знакомство с кинетической энергией. Подведение итогов учебного года

Практика: Оформление итоговой выставки моделей изготовленных в течение учебного года.

Использование оборудования центра образования «Точка роста»:

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов. Четырехосевой учебный робот-манипулятор с модульными сменными насадками. Образовательный набор по механике, мехатронике и робототехнике. Образовательный конструктор для практики блочного программирования с комплектом датчиков.

1.4. Планируемые результаты

По окончанию обучения учащийся будет знать:

- -робо-конструирование (базовый уровень)
- программирование (базовый уровень)

Будет уметь:

Создавать роботизированные системы на основе конструктора на основе **MINDSTORMS EV3**.

В результате обучения по программе учащиеся приобретут такие личностные качества как:

- -любознательность,
- общительность
- творческая направленность

В результате обучения по программе у учащихся будут сформированы такие метапредметные компетенции как:

- -умения информационно-логического характера
- -принятие решений и управление
- -ориентация в областях роботостроительства и программирования

РАЗДЕЛ 2. КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ

2.1. Календарный учебный график

Количество учебных недель – 36

Количество учебных дней – 72

Даты начала и окончания учебных периодов / этапов — с 01 сентября по 31 мая ежегодно.

2.2. Условия реализации программы

1. Материально-техническое обеспечение:

N₂	
(i)	Наименование оборудования
1	Расширенный комплект для класса LEGOMINDSTORMS EV3 HA 16 УЧЕНИКОВhttps://robotbaza.ru/product/rasshirennyy-komplekt-dlya-klassa-lego- mindstorms-ev3-na-16-uchenikov Комплект включает в себя: • 8 шт. Базовых наборов EV3 45544 • 8 шт. Ресурсных наборов EV3 45560 • 8 шт. Зарядных устройств EV3 45517
2	Датчик цвета EV3 LEGO 45506 (5 штук)
3	Ультразвуковой датчик EV3 LEGO 45504 (5 штук)
4	ИК-датчик EV3 LEGO 45509 (5 штук)
5	Датчик касания EV3 LEGO 45507 (5 штуки)
6	Комплект полей для соревнований роботов LEGOIN0010
7	Датчик температуры EV3 LEGO ДТЦ-01

2. Информационное обеспечение:

Электронные образовательные ресурсы

Наименование	Разработчики	Применение
программы		

Серия «1С: Школа»	Под ред. Н.К.	Методическое
Физика. Библиотека	Ханнанова Допущено	обеспечение уроков и
наглядных пособий Рег.	Министерством образования	факульт. по физике
номер 82840390	РФ в качестве электронного	
	учебного пособия	
Интерактивный курс	С.М. Козел, В.А.	Методическое
физики для 7-11 классов для	Орлов, Н.Н. Гомулина	обеспечение уроков и
учащихся школ, лицеев,	Национальный фонд	факульт. по физике
гимназий, колледжей и для	Министерства образования	
самостоятельного изучения	РФ	
физики		
Библиотека	Министерство	Методическое
электронных наглядных	образования РФ, ГУ РЦ	обеспечение уроков и
пособий Физика 7- 11 класс.	ЭМТО, «Кирилл и	факульт. по физике
	Мефодий»	

Информационные ресурсы

- 1. Белоусов И.Р. Дистанционное обучение механике и робототехнике через сеть Интернет. И.Р. Белоусов, Д.Е. Охоцимский, А.К.Платонов [и др.] // Компьютерные инструменты в образовании.2003.— №2.— с. 34-41
- 2. Первый шаг в робототехнику. Д.Г.Копосов. Практикум для 5-6 классов. Москва. БИНОМ. 2014.
- 3. Портал «Ваш гид в мире роботов» [Электронный ресурс]. URL: http://robotrends.ru (дата обращения: 25.12.2023).
- 4. Предко М. 123 эксперимента по робототехнике. М. Предко; пер. с англ. В.П. Попова. М.: НТ Пресс, 2007.544 с.
- 5. Техника/ П. Кент; Пер. с англ. А. В. Мясникова. М.: РОСМЭНПРЕСС, 2013. 48 с.: ил. (Большая энциклопедия знаний)
- 6. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука, 2010. 195с.
- 7. Информатика в примерах и задачах для 10-11 кл. /В.М. Казиев М.: Просвещение. 304 с.
- 8. ЕГЭ Информатика и ИКТ: типовые экзаменационные варианты. 20 вариантов./ С. С. Крылов М.: Изд. «Национальное образование, 2019 г. 416 с.

2.3. Формы аттестации / контроля

Формы контроля и подведения итогов реализации программы

Текущий контроль уровня усвоения материала осуществляется с помощью:

- выполнения учащимися самостоятельных заданий;
- наблюдения;
- беседы.

Итоговый контроль реализуется с помощью:

- соревнований (олимпиады) по робототехнике;

2.4. Оценочные материалы

При оценивании учебных достижений учащихся по дополнительной общеобразовательной общеразвивающей программе стартового уровня «Робототехника» используются:

При оценке качества реализации программы применяются следующие критерии:

- -технические навыки;
- -проявление самостоятельности;
- -оригинальность.

Оценочные материалы программы разработаны с учетом требований к стартовому уровню освоения учебного материала и предусматривают отслеживание уровня начальных навыков овладения работы с конструктором **MINDSTORMS EV3**.

2.5. Методические материалы

Обучение по дополнительной общеобразовательной общеразвивающей программе стартового уровня «Робототехника» основано на следующих **принципах**:

- **-гуманизации образования** (необходимость бережного отношения к каждому ребенку как личности);
- **-от простого к сложному**(взаимосвязь и взаимообусловленность всех компонентов программы);
- **-единства индивидуального и коллективного** (развитие индивидуальных черт и способностей личности в процессе коллективной деятельности, обеспечивающий слияние в одно целое различных индивидуальностей с полным сохранением свободы личности в процессе коллективных занятий);
- **-творческого самовыражения (**реализация потребностей ребенка в самовыражении);
- **-психологической комфортности** (создание на занятии доброжелательной атмосферы);
- **-индивидуальности** (выбор способов, приемов, темпа обучения с учетом различия детей, уровнем их творческих способностей);
- **-наглядности** (достижение задач при помощи иллюстраций, электронных презентаций);
- **-дифференцированного подхода**(использование различных методов и приемов обучения, разных упражнений с учетом возраста, способностей детей);
- **-доступности и посильности**(подача учебного материала соответственно развитию творческих способностей и возрастным особенностям учащихся).

При реализации программы используется следующие методы обучения:

-словесный (беседа, рассказ, обсуждение, игра);

- -наглядный (демонстрация схем, рисунков, изобразительных работ учащихся на всевозможных выставках, конкурсах);
 - -репродуктивный (воспроизводящий);
- -проблемно-поисковый (индивидуальный или коллективный способ решения проблемы, поставленной перед учащимися);
 - -творческий.

При реализации программы используется следующие методы воспитания:

- -упражнение (отработка и закрепление полученных компетенций);
- -мотивация (создание желания заниматься определенным видом деятельности);
- -стимулирование (создание ситуации успеха).

Основными формами образовательного процесса являются беседы, практические занятия, игры. На всех этапах освоения программы используется индивидуальная, парная и коллективная формы организации процесса обучения.

Для достижения цели и задач программы предусматриваются **педагогические технологии** разноуровневого, развивающего, компетентностно-ориентированного, индивидуального, группового обучения, коллективной творческой деятельности. Данные технологии учитывают интересы, индивидуальные возрастные и психологические особенности каждого учащегося, уровень стартовых образовательных компетенций.

2.6. Список литературы

Список литературы для педагога

- 1. Белоусов И.Р. Дистанционное обучение механике и робототехнике через сеть Интернет. И.Р. Белоусов, Д.Е. Охоцимский, А.К.Платонов [и др.] // Компьютерные инструменты в образовании.2003.— №2.— с. 34-41
- 2. Первый шаг в робототехнику. Д.Г.Копосов. Практикум для 5-6 классов. Москва. БИНОМ. 2014.
- 3. Портал «Ваш гид в мире роботов» [Электронный ресурс]. URL: http://robotrends.ru (дата обращения: 25.12.2023).
- 4. ПредкоМ. 123 эксперимента по робототехнике. М. Предко; пер. с англ. В.П. Попова. М.: НТ Пресс, 2007.544 с.
- 5. Техника/ П. Кент; Пер. с англ. А. В. Мясникова. М.: РОСМЭНПРЕСС, 2013. 48 с.: ил. (Большая энциклопедия знаний)
- 6. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука, 2010. 195с.

Список литературы для учащихся и родителей

1. Большая энциклопедия открытий и изобретений/Науч.-поп. издание для детей. М.: 3AO «РОСМЭН-ПРЕСС», 2007. 224 с.

- 2. Моя первая книга о технике: Науч.-поп. издание для детей. М.: ЗАО «РОСМЭН-ПРЕСС», 2005. 95 с.
 - 3. Филиппов С.А. Робототехника для детей и родителей. М.: Наука, 2011. 264 с.